Podcasts by VK6FLAB

Subscribe to Podcasts by VK6FLAB feed Podcasts by VK6FLAB
Starting in the wonderful hobby of Amateur or HAM Radio can be daunting and challenging but can be very rewarding. Every week I look at a different aspect of the hobby, how you might fit in and get the very best from the 1000 hobbies that Amateur Radio represents. Note that this podcast started in 2011 as "What use is an F-call?".
Updated: 5 hours 53 min ago

We need more glue in our hobby ...

1 hour 14 min ago
Foundations of Amateur Radio

Since December 2010 I've been licensed as a radio amateur. For some this seems like a long time ago, for others, it's just the beginning. In my time thus far I've attempted to document and describe my journey and in doing so, I've had the unbeatable pleasure of hearing stories from others who were inspired by my efforts to join, or rejoin the hobby.

It occurred to me that it's hard to tell when you look at any one amateur if the ink on their licence is still wet, or if the whole certificate is faded and yellowed with time.

You also cannot tell by looking if one amateur turns on their gear in the car during the daily commute, or if they go out on expeditions to remote locations twice a year.

The callsign a person holds tells you even less, let alone the class of their license.

In our community we talk about mentoring and we call such people Elmers, but do we really use this as a way to glue together our hobby as its namesake might suggest?

As a result of my profile, there's a steady stream of commentary about what I do and how I do it. As you might expect, there's both good and bad, sometimes describing the same thing from opposite sides in equally heated terms.

I'd like to take this opportunity to point out that playing the man and not the ball will get you completely ignored. If however you have a specific grievance with any technical aspect of what I'm contributing, by all means let me know, but be prepared to provide references because it might come as a surprise, I do research before I open my mouth. That's not to say that I don't make mistakes, I'm sure I do and have.

Before this turns into a self congratulatory oration, I'd like to point out that all the negative feedback I see all around me does nothing to grow our hobby, does nothing to encourage learning, does nothing to reward trial and error and it doesn't contribute to society at large in any way.

I'm mentioning this because I also receive emails from amateurs who have left the community, not because of lack of interest, but because of the bullying that they've experienced.

I know that there are several local activities that I avoid because it's just not fun to bump into people who are friendly to your face whilst being vicious online.

It continues to amaze me that this topic keeps recurring and that it keeps needing to be called out. One thing I can tell you is that ignoring it doesn't work. I've described previously what you should do instead when you're the subject of such petulant behaviour, but it bears repeating. Say it out loud.

"Thank you for your comment. I don't believe that it's in the spirit of amateur radio. Please stop."

Feel free to use that phrase anytime someone in this hobby makes you feel uncomfortable.

One final observation. If you've not personally experienced this behaviour that's great, but it doesn't mean that it doesn't happen or that it's not endemic. Consider for a moment how you'd feel if you were attacked whilst being active in a hobby you love, for no other reason than that the person attacking you didn't like the wire you were using to construct a dipole or some other equally outrageous reason like your gender, sexual orientation, license class, choice of radio or preferred on-air activity.

Say it with me:

"Thank you for your comment. I don't believe that it's in the spirit of amateur radio. Please stop."

I'm Onno VK6FLAB

The Fox Mike Hotel Portable Operations Challenge

Sat, 09/11/2021 - 12:00
Foundations of Amateur Radio

Getting on air and making noise is what it's all about, so last week, that's exactly what we did. Randall VK6WR, Jishnu VK6JN and I participated in the Fox Mike Hotel Portable Operations Challenge which is specifically scored to deal with power and mode differences between stations by using a handicap system that they liken to playing golf. Having been the winner of the Sir Donald Bradman Award in the Millmerran Memorial Golf Tournament for making the highest score on the day, this speaks to me in more ways than I can say. In case you're wondering, more hits in golf is bad and I'm not a golfer.

Scoring in the Portable Ops Challenge is based around four different attributes, the power you're using, the nature of your station, portable or fixed, the mode used and the number of transmitters in use.

To achieve this, you exchange a maidenhead grid square, a combination of letters and numbers that indicates your location on earth, which is then used to determine how many kilometres per Watt are used to make the contact.

If you're portable, you get a multiplier benefit in the scoring.

Depending on the perceived difficulty of the contact, you score more points. In this case, SSB is harder than CW, which in turn is harder than a digital mode.

Finally, the more transmitters you have, the less each contact is worth. Two transmitters, means you score half the points for each.

With that in mind, a QRP portable station with a single transmitter calling CQ on SSB is the best way to make points and that is something that I'm always up for.

In our adventure, we opted for a slight change, instead using FT4 and FT8, using 40 Watts, portable, on the side of a hill in a local park and during the four hours we were active, we managed six contacts, one over SSB, the rest using digital modes and we all had several goes at getting the best out of our station.

Our set-up consisted of a small folding table next to my car with a computer, a radio and a thermos flask with hot tea to ward off the chill in the air. Power was supplied by an 80 AH battery. The radio was an Icom IC-7300 that Randall brought along.

The antenna we used was a Terlin Outbacker, multi-tap whip that was attached to my car with a 12m counterpoise run along the gutter.

None of us had ever seen such excellent conditions with such a low noise floor in the middle of the city. We were enjoying the last warm sun of the day from Kings Park in Perth, Western Australia. It's a 990 acre park, larger than Central Park in New York, set aside for public use in 1831 and gazetted as a public park in 1872. The park is open 24 hours a day and features a botanic garden with thousands of species of Western Australia's native flora and fauna, overlooks the central business district, the Swan River and the Darling Ranges and best of all, there's no radio noise. It did get chilly towards the end, but I'm pretty sure we all went home with all our fingers and toes intact.

Jishnu also brought along his FT-817 and a tiny multi-tap telescopic whip that we strapped to a nearby steel rubbish bin and using that set-up was able to detect and transmit WSPR signals across the globe as part of experimentation with his station.

One of the unexpected benefits of not yelling CQ into a microphone ad-nauseam was that we were able to continue our conversation, hearing stories from each other and enjoying hot pizza when dinnertime came around without needing to stuff food into the same place where CQ calls were intended to originate.

My car isn't quite ready to go completely portable, but this little outing again proved to me that portable vehicle based operation has a charm all its own and the Fox Mike Hotel Portable Operations Challenge is going to be on my dance card next time it comes around!

When was the last time you left your shack and went portable?

I'm Onno VK6FLAB

What's in a sound?

Sat, 09/04/2021 - 12:00
Foundations of Amateur Radio

Over the past few weeks I've been having my hearing tested. I've had the opportunity to discuss sound in some detail with an audiologist. Today as a result of a collision between a jar of chilli pickles and a tiled floor I've come to the realisation that sound is important in unexpected ways.

It will probably not come as a surprise to you that sound has an emotional component. Just think of a particular song, or a voice, or something that you've heard previously. The sound of a jack-hammer, or a bell, a horse or a jet, each completely different, impact on your mood. Some sounds are pleasant, others jarring. Some make you feel happy, others make you anxious or even angry.

For some time now I've observed in myself that there are times when I cannot stand sound and other times when I invite it into my life.

For example, if there's a HF radio going in the background and I'm attempting to have a conversation with a person in the shack, the sound coming from the radio causes irritation, to the point of needing to turn it off in order to actually hold a conversation. On the other hand, if there's a contest on, I can sit, happy as a clam, listening to HF all day and night, working out what station is calling, and making contact.

I'm raising this because it occurs to me that amateur radio is unlike broadcast radio where you're expected to actively monitor what is being transmitted. In my experience as a radio broadcaster you're talking into a microphone and the headphones you're wearing are connected to a radio receiver which is tuned to the station on which you're broadcasting. This gives you immediate live feedback on the state of your audio levels.

As an aside, I once witnessed a fellow broadcaster who didn't feel the need to wear headphones. They were blissfully unaware that their voice was being transmitted into silence because the audio fader on their microphone was down.

In amateur radio however, we don't often do such things. We transmit blind most if not all of the time. It's rare that we even hear our own voice on-air, let alone hear it in real time. If that's not enough, using sideband, it's easy to modify the sound of a person by changing the frequency slightly, making their voice either higher or lower, just by adjusting the dial.

It occurred to me that how your voice is perceived by the other station assists in how that station can hear you and make contact.

Using the local repeater is a good but subtle example. If you've listened for a while, you might have observed that there are stations that are easy to understand and others that are not. Sometimes that comes down to individual accents, but in my experience a much larger impact is caused by the actual transmission itself.

Is the microphone gain set correctly, is there any filtering in play, is the station on the correct frequency, is the transmitter using the correct mode and other more subtle things like background noise, speaking volume and distance and direction in relation to the microphone.

We often talk about less being more and you already know that I'm a big fan of low power or QRP operation. Making contacts is absolutely about using the right antenna, the right mode, the correct band and time of day, but the sound coming from your station is just as important.

If you have the ability to use two radios simultaneously, then I'd recommend that you find a way to either use a local repeater, or a cross-band repeater, or even a remote web-based radio, to hear what you actually sound like on-air, live, and experiment with the various settings on your radio in order to test and improve the quality of your voice.

Whilst we as radio amateurs don't standardise our signals, though personally I think it would be a great idea, there's plenty of improvement to be had by taking some time out of your next on-air activity to have a long hard listen to yourself.

I'm Onno VK6FLAB

Taking your shack mobile

Sat, 08/28/2021 - 12:00
Foundations of Amateur Radio

When I first started in this hobby I found myself surrounded by other amateurs who all seemed to have a spare room in their house, or a spare building near their house, or even a property somewhere, dedicated to amateur radio. There was an endless parade of equipment, antennas, tools, workshops, spare parts and the like. Frankly it was overwhelming.

A decade on, I have some perspective to share on that first exposure. For me the hobby was brand new. I didn't have a family history, there were no amateur friends I'd grown up with, no electronics uncle or anything even remotely resembling any of that. What I was exposed to wasn't a new thing, it represented something that had been going on for years, decades and lifetimes even.

It quickly became apparent that having a shack was desirable, but in my case, at the time, unobtainable, so instead I did the next best thing I could think of. I built a shack in my car. That was a journey that took several years to make. At the end of it, I removed my radio from the car and moved it onto a spare table in my office.

I have spent countless enjoyable and sometimes frustrating hours in my car shack and I learnt that it's almost always temporary. If you're not the exclusive user of the car, then your shack isn't always available and in that case it also needs to be family friendly, as-in, no cables, mounts, brackets and the like that can cause damage to a person, or the equipment. This limits the options you have.

At the end of my car journey, I had a spare battery in the back, the radio and tuner were mounted under the floor next to the spare tyre, there was an antenna mount attached to the car, there was braiding throughout the car, connecting all the body panels together and the remote control head was detachable from a suction mount that doubled as a mobile phone holder. Antennas, one for HF, one for VHF were stowed against the roof lining with a strap around the roof hand grab of the rear passenger. An external speaker was mounted below the head rest of the centre rear passenger.

What I learnt was that this setup was good for short stints, for mobile operation, for contests on the run and for working DX at lunch time at the beach. Trying to do digital modes, attempting to work a pile-up, or doing several other activities I love were not really feasible and as a result I decided to pull it all out.

At this point all that remains in the car are the braiding, the control lead, the speaker, the coax and the antenna mount. I plan to rebuild my car shack in the not too distant future. More on that in a moment.

I moved house and found myself in an office that was perfect for multiple reasons. It was separate from the rest of the living space, so I didn't need to put away stuff. It was big enough to house a dedicated radio table and it's got pretty simple access to the outside world for running coax. It gives me a dedicated place to do radio and have stuff set-up permanently.

I noticed one thing after having this available.

I didn't actually get on-air any more than when I was using my car shack. If anything it's less. I think it's because it's also my office and I already spend plenty of time doing office activities that playing radio isn't all that different. I'm going to keep my set-up, but I'm going to go back to my roots and add a radio back into my car.

It's still a family car, so I need to consider the other uses that it's put to, but I think I can make it work. I recently installed an 80 Amp Hour battery with an automatic charging circuit. It was put there to power the dash-cams, but it was scaled with amateur radio in mind.

I don't yet know which radio I'm going to put into the car, I really do like my FT-857d, but there are other options available to me, so I'm going to experiment.

One fundamental change I'm going to make is that the radio will be installed in such a way that it can be easily unplugged and removed. Not because I want to remove it from the car, but because I want to be able to go even lighter, take the radio onto the beach, or into a park or up a summit. I'll likely bolt the whole lot into a Pelican case and make it a mobile go-unit that happens to live in my car.

I don't think I'll add digital functionality at first, but I'm eyeing off the idea of dedicating an old mobile phone, which is essentially a computer, screen, battery and internet connection in one to the task, but I'll let you know how that goes.

What I do know, with hindsight, is that less is more.

I'm Onno VK6FLAB

What's in a unit?

Sat, 08/21/2021 - 12:00
Foundations of Amateur Radio

In our hobby we use kilohertz and megahertz enthusiastically. Sometimes even gigahertz. The other day during a discussion the question arose, what comes after tera, as in terahertz? I couldn't remember, so I had to look it up, peta comes next, then exa, zetta and yotta, derived from the Greek word for eight.

That in and of itself was interesting, but it turns out that Greek isn't the only language used in attributing SI metric prefixes, SI being the International System of Units. Of the 20 units, which I'll get to in a moment, there's 12 with Greek origins, five deriving from Latin, two from Danish and one from Spanish.

The units are used to describe how many of a thing there are in base-10, so, a thousand of something is kilo, or ten to the power of three, which gives us kilohertz. A gigahertz is ten to the power of nine and so-on. Interestingly, kilo is derived from the Greek word thousand, but mega comes from the Greek for great. Both hecto, as in hectopascals and deca as in decathlon originate in the Greek words for hundred and ten. The prefix pico, as in picofarad comes from the Spanish word peak and femto as in femtowatt comes from the Danish for fifteen, as in ten to the power of minus 15. Apparently a zeptomole of a substance contains 602 particles, even NASA says so, let me know if you can find a source for that.

I could devote my entire discussion on these 20 units, adding for example that their naming wasn't all done at the same time, the most recent additions are yotta and yocto, as I said, derived from the Greek for eight, being ten to the power of 24. How's that eight you ask? Well, three times eight is 24. I'm not saying it's intuitive, but there is logic.

In looking at all these units, and specifically the smaller ones, milli, micro, nano, pico and the like, it occurred to me, is there a way to go below one Hertz, could you have half a Hertz?

Hertz is the number of oscillations per second, a single Hertz being one per second. Half a Hertz would be one oscillation per two seconds. I started wondering what to look for in discovering if anyone has been playing with this. For the life of me, I couldn't think of what to search for and my experience tells me that if you cannot find the answer online, you're asking the wrong question.

This morning, with a fresh cup of coffee in my hands, it occurred to me that anyone doing this kind of stuff would be using SI units, so they'd be using decihertz, centihertz, millihertz, microhertz and nanohertz, perhaps even picohertz. So I went searching.

Turns out that this actually exists. After wading through endless results with conversion tools and dictionaries, there's plenty of research to find.

The unit decihertz is being used in gravitational wave interferometry, specifically, there's a Japanese, space-based gravitational wave observatory in the works with hopes of launching their three space craft if they can find funding.

It doesn't end there.

There are experimental imaging studies being made on malignant and benign human cancer cells and tissues looking at decihertz all the way down to yoctohertz, that's ten to the minus 24.

Inside Apple software development documentation, in addition to mega, giga and terahertz you can find links to milli, micro and nanohertz as predefined units.

NANOGrav stands for North American Nanohertz Observatory for Gravitational Waves and it uses the Galaxy to detect them. It was founded in 2007 and is part of a global community of scientists in places like Australia, where the Parkes Pulsar Timing Array is located - yes, that Parkes - made famous from the film "the Dish" and Europe with the European Pulsar Timing Array, combining five separate radio-telescopes, all coming together under the banner of the IPTA or International Pulsar Timing Array.

The point of my little exploration is that if you're curious about random things, you can often come across activities and ideas you know nothing about and learn something along the way.

Today I learnt that there is such a thing as a sub-Hertz signal, it's being explored all over the globe with scientists in different fields and it's happening without much in the way of public awareness.

What did you learn today and which SI prefix didn't I use?

I'm Onno VK6FLAB

Being an equipment custodian

Sat, 08/14/2021 - 12:00
Foundations of Amateur Radio

A couple of weeks ago an amateur put out a call on the local email discussion list. The message was simple, it read: "I have a 606A HP Signal Generator with a copy of the Operating and Service Manual. It covers 50 kHz to 65 MHz. Free to a good home :-)"

It's not the first time that such a message has done the rounds, but this time my reply was quick enough for it to be first. Overnight I became the new custodian of a Hewlett Packard 606A Signal Generator.

A signal generator is a tool that can form a specific carrier across a range of frequencies in much the same way that your amateur radio can. In this case, the HP-606A can cover all the amateur HF bands and everything in between. The signal that's generated is calibrated, that is, it's of a specific power level, very stable, clean and it can be used to calibrate other equipment.

To set the scene, the HP-606A was released into the wild in 1959. You might call it vintage at this point. It's the size of a modern microwave oven, so I'll need to set aside some bench space in order to actually use it. According to some it's "the best analogue signal generator ever built". It's been in production for decades, with plenty of information to be found online.

Unlike most modern gear, this equipment comes fully documented by the manufacturer, to the point of user manual revisions depending on the serial number and including essentials like circuit diagrams, parts list, spare parts list, calibration instructions and the equipment needed, how to open it up, tests to conduct after repair, how to conduct regular maintenance and how to replace the tubes in it.

Yes, I did say tubes, or valves, or glow in the dark electronics.

At this point I've not yet switched it on. You might wonder why that's the case. This unit has internal voltages exceeding 500 Volt DC, so some care is required. Inside are at least four electrolytic capacitors. Think of each of them as two pieces of aluminium sandwiched together, separated by a piece of foil and electrolytic paste, all rolled up into a cylinder.

When an electrolytic capacitor is built, the process to convert these components into an actual capacitor involves forming it, which means that the manufacturer applies a specific voltage to the pins of the capacitor and in doing so, causes a chemical reaction which makes all manner of funky stuff happen, including unidirectional conductance, something you're looking for in a capacitor.

Over time, when not in use, or in my case, in storage, this chemical reaction reverses and the capacitors are back to rolled up aluminium with some foil in between. Powering it up in this state will let the smoke out.

It turns out that in many cases you can apply the voltage again and reform the capacitor. Apparently, according to the author of Tu-Be Or Not Tu-Be Modification Manual by H.I. Eisenson, applying the voltage for five minutes plus one minute per month of storage does the trick. In my case, I can leave the capacitors in circuit and apply the voltage externally using a Variac, a Variable AC Transformer, loaned to me by Denis VK6AKR.

Doing the math is a little tricky, since we don't really know when the unit was last powered up, but we're told that it was some time in the last decade, so a couple of hours should suffice, but there are some wrinkles in relation to voltage and managing the step to powering up the tubes, so when I've made it happen, I'll let you know.

Denis was kind enough to help with opening up the cabinet and having a look-see inside. We noticed that it has previously been expertly repaired with a few replaced components and Denis managed to identify some likely failed tubes, so we're on the scrounge for those. Together we did some initial tests and ran up the unit using low voltage to determine if the various test points were actually showing the proportional voltages that were expected. This isn't like a digital circuit where it either works or not, using a Variac, you can slowly power this up, to a point, and test along the way.

This brings us to the provenance of this tool.

I got it from Dave VK6AI and from discussion, we think it came from the estate of Don VK6HK, now silent key. I've met Don's widow who happens to be the neighbour of a friend, so at some point when I have it working I might give her a call. I don't know who owned it before Don. I do know that when it was released, in 1959, it was sold for $1540 US Dollars, the equivalent of $14,000 in today's money, or half a car back then.

Based on serial numbers, this HP-606A appears to have been manufactured between October 1961 and August 1966, so it's older than I am. In case you have extra information, the serial number is 009-01180 and my email address is [email protected] If you have spare valves, a 12B4A is high on the list, get in touch.

While Denis and I were exploring inside the guts of this function generator, we were at the clubhouse of the local WA VHF Group, surrounded by other amateurs who were doing their own thing. At one point I looked up and noticed two amateurs in deep discussion about using a piece of software, CHIRP, to program a handheld radio on a Windows 10 laptop, whilst I was sitting across the table, picking through the guts of a 1960's piece of equipment. It made me smile, thinking about the history that those two extremes represented.

Becoming the custodian for such a significant piece of equipment isn't for everyone. I've been given suggestions to toss it out and buy something modern, but I have to confess, even though I'm software personified, SDR to the core, well, aiming to be, this piece of equipment does something for me.

What equipment do you own that makes you go all misty eyed?

I'm Onno VK6FLAB

All the things that aren't amateur radio...

Sat, 08/07/2021 - 12:00
Foundations of Amateur Radio

Recently I illustrated the diversity of our community by highlighting social media posts made to a single community over a 24 hour period. Each reflecting a different aspect of our community.

It occurred to me that although those things are amateur radio, some more obviously than others, there's a whole other side of the community that isn't amateur radio.

Look at radio astronomy for example. One of my friends is an astronomer and we've been having loads of fun learning from each other. I'm getting exposed to concepts like Fourier transforms, interferometry, sampling and plenty of the mathematical concepts that underlie my interest in amateur radio.

Then there's things like physics. While I've always been interested, long before I met my physics teacher in high-school who helped me kick off a career in computing, I've been playing with light bulbs, batteries, disassembling old hardware like the valve radio that I was given when I was about twelve or so.

There's the continued curiosity about audio. I've been making mix-tapes since I was nine, and that has blossomed into an ongoing interest in audio production, some of which is reflected in my weekly podcast and fuelled by my hearing loss.

My interests outside amateur radio have always been wide and varied. I've learnt to fly an aeroplane, learnt to navigate a sailboat, learnt to drive a truck, installed satellite dishes in the bush and built a mobile satellite ground station, built software solutions for piggeries and bakeries, provided logistics for remote outback events, built vehicle mounted GPS tracking and mapping solutions and I continue to read articles as they come my way.

What amateur radio has given me is a context, a framework if you like to bring together these wide ranging fields and make them hang together.

An obvious, though simple example, is learning the phonetic alphabet. In amateur radio it's a given that you'll need to learn that so you can effectively communicate using a poor signal path, but my phonetic learning predates my amateur radio exposure by at least a dozen years. In order to pass my aviation radio certificate, I was required to learn the phonetic alphabet before I was allowed to use the radio.

It's only a small example, but it's illustrative on how, for me at least, amateur radio is the glue that binds it all together.

It happens at other levels too. I've mentioned in the past that looking at a television antenna on the roof of any house before getting a license was a non-event. Today I can't look without thinking about propagation, how the antenna is aligned and if it's installed back-to-front or not. Once you know a thing, it's hard to un-see, or unlearn the background of it.

The same happens when I spot an antenna in the wild, stuck to a lamppost, or bolted to a random roadside cabinet. Previously they would go unremarked, today I wonder what information they're transmitting or receiving, what band they're operating on, who owns the equipment and what interference they might be causing or experiencing in their environment.

I have a growing interest in computer controlled manufacturing like 3D printing, laser engraving and CNC and spend some of the available time in the day learning about how that works, how to improve things and I wonder about how the speed of communications between the various components create an RF field of some sort and what that does to other components and circuits.

As a final experience, recently I had a medical procedure where there was a notice supplied with the logging hardware that specifically called out amateur radio as a source of electromagnetic radiation and that I was required to refrain during the process due to a potential failure of the equipment. If anything, for the first time in a long time, I felt that there was a visible link between my hobby and the rest of the community, since that notice was given to every single person, not just the radio amateurs.

Some links between amateur radio and the rest of the world are visible and some are not. What kinds of interactions between the hobby and society at large have you come across?

I'm Onno VK6FLAB

The diversity of our hobby is breathtaking.

Sat, 07/31/2021 - 12:00
Foundations of Amateur Radio

You've heard me say that amateur radio is a thousand hobbies in one. It's not my idea, but it speaks to me in ways that are hard to articulate. Today I found a way that might give you an inkling just how vast this community is.

One place where our community gathers is on-air, but it's not the only place. There are clubs, websites, email lists, video channels and other outlets all catering for different amateur radio users and their interests. One such place is the social media site Reddit. In the so-called amateurradio sub with currently over 88 thousand members, there is a lively community discussing many of the different aspects of our hobby.

Over the past 24 hours, 23 posts were made in that single community.

"Thanks, K-2722 hunters", was a photo about activating Carolina Beach State Park, as part of an activity called Parks on the Air, or POTA. To participate you can either go to a park, set-up your station and make contacts, or you can stay at home and listen out for people who are doing that.

"It's not high-high, it's hee-hee", a meme around the sound that the Morse Code generates when you send the letter H followed by the letter I, commonly considered laughter.

"Why don't scanners have FM radio?", a discussion around the perceived lack of FM mode on scanners.

"Help with TYT MD-380 CPS", a question from an amateur who purchased a new radio and is looking for software to program it.

"Portable on the Space Coast. QRP on a speaker wire antenna.", a video of an amateur making an activation in Florida and showing off their set-up.

"Could not hit DMR repeater", an amateur sharing that they figured out that they couldn't hit a repeater because they had their radio set to low power and wanted to share that with the community.

"Antenna advice part 2", asking about how to set-up antennas for dual use, how to amplify the signal, use rotators and what kind of coax to use.

"ISS SSTV Aug 6-7 145.800 MHz FM", linking to a news item announcing slow scan television coming from the International Space station in August.

"FT-3DR APRS message question", exploring the specifics on how Automatic Packet Reporting System or APRS messages are sent. Think of it as global distributed SMS via amateur radio.

"Is it okay to leave a handheld radio on while it's on its battery charger 24/7?", with answers to the question that's puzzling one owner of a radio.

"Extra test question", asking about how to learn for the test and wondering if the techniques needed are different when compared with obtaining the "tech" exam.

"Just got my first radio! Now to prep for the test, but first a question about saving time after I pass it...", asking about how to register before the test to speed things along.

And that's just over half way there.

"Maldol TMH-21 / TMH-71 handhelds - any info?", asking about a new to them radio from around 2007.

"2021 Berryville, VA (US) Hamfest - any reddit community members going?", looking for others going to the first hamfest in their region for a long time.

"CB Radio is Going FM! Why is the FCC Doing It?", linking to a video that discusses the changes on how CB radio is getting another mode.

"What is the 'right' way to learn morse?", the age-old question, one that I'm still am working through.

"Sidetone distorted on QCX mini? How do I fix this? It gets better or worse when I move the radio around, but the problem doesn't go away. Anyone else's QCX do this?", with a video showing the issue.

"Aluminium roof trim + HF dipole", with a question on what kind of effects might happen as a result of the combination of the two.

"Never owned a Radio be for please help lol. I got 2 of these on the way any tips for beginners? [sic]", excited new owner looking for advice.

"I finally got my qsl cards printed!", with pictures to show the artistic prowess involved.

"Legality of transmitting digital data over FM audio", asking about the specifics on how data may or may not be transmitted in the United States.

"It's no pie plate on a kayak, but you gotta work with what you have, right?", showing off a frying pan as a magnetic base. If it works, it's not silly at all.

"Very New Here", asking about how to explore radio waves.

Those 23 different posts are all about amateur radio, from one single community, on one day. Each post from someone finding their way in the community, discussing something that's important to them, sharing their experience and contributing to that community. Reddit alone has at least a dozen amateur related communities, covering electronics, specific radios, amateur software development and more.

The thing about this hobby is that it's different things to different people. For some it's about getting on air and making noise, for others it's learning about whatever comes their way. This hobby is so vast because it touches so many aspects of life, it innovates, leads and contributes in ways that are often invisible and that's why it's so engrossing.

What's your latest interest in this hobby and what keeps you coming back for more?

I'm Onno VK6FLAB

How are contests scored?

Sat, 07/24/2021 - 12:00
Foundations of Amateur Radio

The essential purpose of an amateur radio contest is to get on air and make noise. Each contest has a set of rules on how they intend to achieve this. An integral part of the rules is the idea that you establish a contact, a QSO, with another station and exchange some predefined information. Likely the callsign, a signal report and often something else, a serial number, the age of the operator, a maidenhead locator or the CQ or ITU zone. I'll race past the discussion around sending 5 and 9 as a standard signal report and move right along.

To validate your activity, you record this information in a log and after the contest has concluded, you share your log with the contest organiser who collates and processes the submitted logs to determine a winner. As a participant you look for your callsign on the results page and if you're lucky you get some form of trophy, a certificate, a plaque, or more often than not, a PDF. An amateur radio contest is not a particularly high stakes competition.

Recently I asked a group of contesters a question: "How do you learn why a QSO was excluded from your score?" I asked because one of the eight contacts I managed during a recent contest was disallowed, leaving me with an unexplained discrepancy between my log and the results. I will note that this entry didn't affect my ranking, I won my category, mainly because I was the only entrant - hah!

Depending on whom you ask, this is either a simple or a complex question.

The simple explanation states that if the contact isn't in the log of both stations it's not a valid contact. This interpretation was extremely popular in the group I asked.

It was not the only answer I received.

When I spoke with individual contesters they came up with different answers to my original question.

For example, if I log everything right, if I'm using a serial number, the number increments each time and my log shows that, then my log entry should be valid, even if the other station didn't log it correctly. Note that I said log, not copy, as-in, they repeated back what I gave them, but logged it incorrectly.

I also wondered what would happen if I was using a club-station callsign and accidentally called CQ with my own callsign and a station logged that callsign instead of the club-station. Should they be penalised because they logged what was actually exchanged?

There's more.

For example, what happens if the times are not identical? Based on the simple explanation, this would not be a valid contact, so you would not get recognition for this exchange and in some contests an invalid contact will produce a penalty to both stations.

Another variation to the simple answer occurs if the contest organiser doesn't receive a log for every station and as a result, some contests set a maximum number of contacts for stations without logs.

All this came within the context of attempting to discover how log validation happens, who decides what's valid and what rules are used. During my group conversation, two contest managers shared how they scored their particular contests and showed that they attempted to award the benefit of doubt to each station. One decided after the discussion to change their interpretation to the simple explanation I've already looked at.

I wanted to know if there was any standard and other than pointing vaguely in the direction of a few large contests, I didn't actually manage to find any definitive discussion on how this works, if it's universal, which I suspect it isn't, and if it changes over time, which I know it does.

The largest annual contest is the CQ World-Wide. In a 2012 blog post the contest committee discusses the time window of a contact and explains that they allow a 15 minute window, so as long as both contacts agree within 15 minutes, the QSO is allowed. That post also pointed out that if the time for one station was out by 45 minutes, none of their contacts would be allowed and anyone who made contact with that station would by implication get a penalty.

Clearly there are variations on how this is handled.

I asked if there is validation software for logs that checks this and if that software is open source so others can look at how decisions are made and see how these evolve over time. Is there an arbitration that goes beyond the standard phrasing in most contests: "The decision of the contest committee is final."

I was told that this wasn't necessary and I should focus on more practice. I beg to differ. I've been contesting for a decade now, I have plenty of winning certificates on my wall. I'd like to improve my skill and I'd like to learn why and how my contacts are disallowed and I'd like others to be able to do the same.

Log checking software is written by humans who interpret the rules and write software to conform to those rules. In order to see what rules are in place and to validate that, the source of that software must in my opinion be open and transparent.

As a community we sit at the boundary between professional communications and a hobby and we often use the idea and concepts of a contest to argue that this is the best way to hone skills and to make you a better operator in case of an emergency, but if you cannot actually learn from your mistakes, if there is no discussion on how decisions are made, if there's nothing beyond simple answers, then are we really striving for improvement or just set in our ways?

For the record, I think that if a contest log is off by 45 minutes throughout the entire log, software should pick that up, award the contacts and point out the mistake to the person who didn't set their clock correctly, especially since time is not exchanged during any contest I know. I also think that if a station logged what was actually said, there is room for that to be considered a valid exchange, but then I've only been an amateur contester for a decade, so I have plenty to learn.

I'm Onno VK6FLAB

Share if you care...

Sat, 07/17/2021 - 12:00
Foundations of Amateur Radio

When you explore the landscape of amateur radio you'll discover an endless array of innovation. There's websites with photos and descriptions of activities, places discovered and lessons learnt. If you watch the growing collection of YouTube channels you'll discover videos describing what people have been up to, commenting on videos they've seen and you'll start to notice that people all over the community are pinging off each other. Social media does the same.

If you read an amateur magazine, or a book, you'll unearth references and counter-references, links and credits, descriptions gleaned and tests made, all of them interlinking and adding to the knowledge base that underpins the amateur radio community and society beyond it.

The same is true for on-air activity. Look at contesting for example, you'll hear descriptions from other contesters, sharing their lessons learnt which potentially influence how you do your next contesting activity. The same is true for working DX, operating any digital mode, running an on-air net, running a SOTA activation, anything.

The point being that you are influenced by others and everything you do influences somebody somewhere else who in turn influences the next person who might then influence you. On and on the chain grows.

This chain of knowledge goes back to the early science in our hobby, the works of James Clerk Maxwell who for the first time brought electricity, magnetism, and light together as different manifestations of the same phenomenon in 1864.

The reason we know this is because he published his work and without needing to leave home to see the original, anyone can read it today from the comfort of their living room thanks to the PDF that's on the Royal Society web-site.

The point being that Maxwell documented his work and shared it with the world.

In our hobby we've gone through the process of making our equipment from unobtainium, requiring that the actual components were constructed before you could actually put them together and use them for their intended purpose. We then went on the scrounge for parts from other equipment, acquiring surplus gear and through a phase where you could buy new components off the shelf and attach them to an etched circuit board. That evolved into being able to design a board, ordering it online, having it built for cents and shipped to our door.

Today an increasing component of our hobby evolves around software with its unique property of transience.

Unlike physical components, software is intangible. You imagine how something might work, you describe it in an imaginary language, convert it into something that can be run inside a computer, and if you did it right, the outcome gives you the basis for your next experiment.

When software reaches a certain level of complexity it becomes impossible to remember. You tweak something over here and something over there changes and unless you can keep all that together inside your brain as a cohesive imaginary model, you quickly run into a brick wall.

If you're a software developer you've likely heard of tools like CVS, SVN and git. They are examples of revision control. They're used extensively in software development, but increasingly they're being used to track changes in documents, legislation and places where change is constant.

As an aside, if you load the various versions of legal requirements of your license into revision control, you'll quickly discover that your license is slowly evolving over time, for better or worse. From personal experience, I know doing that for the Radiocommunications Licence Conditions in Australia was very interesting indeed.

Each of these tools gives you the ability to tweak something, track it and if it doesn't work out, revert to where you started your experiment. It's a little like using a soldering iron and a soldering wick, physical undo for experiments.

When I talk about Open Source software, I'm not only talking about the ability to look inside and add functionality, I'm also talking about accessing the history that goes with that.

Open Source software generally only works if it comes with a revision history, a trail of discovery outlined right there on your screen showing what worked, why and how it came about. There's often options for showing who made what change, which changes happened at the same time and the ability to extract that particular change. All essential ingredients for experimentation.

Closed Source software does all those things, but privately. It too likely uses revision control tools, even the same ones as Open Source, but the discoveries are held in-house, behind closed doors, used by a select few. The software evolves inside the organisation, but there's no insight for or from the outside world.

Of course, everyone is entitled to keep their stuff secret, but if you want to make a contribution to society outside the life of your walled garden, the only way forward is to publish and share your work like scientists have been doing well before the Royal Society held its first meeting on the 28th of November 1660.

Share if you care...

I'm Onno VK6FLAB

What Open Source means to our hobby and why it's important.

Sat, 07/10/2021 - 12:00
Foundations of Amateur Radio

For much of the past month I've been attempting to articulate what Open Source Software is, why it's important, how it's relevant to our hobby, how it works, how software is different from hardware and why you should consider if the equipment you buy comes with source code or not. I'm finding it difficult to separate out the issues since they all hang together in a cohesive clump of ideas and concepts.

So, let me go sideways to set the scene.

There is a movement that asserts the right to repair our own things and to ensure that manuals and diagnostic tools used by manufacturers are made available to the public.

For many radio amateurs that might sound quaint and obvious, since for much of the hobby that kind of information was not only available, it was expected and assumed to be available. You can get the circuit diagram and testing procedures, the alignment process and the list of required test equipment for most if not all amateur transceivers today and truth be told, if that testing gear isn't available, we tend to build or scrounge our own.

Compare a Yaesu FT-857d and an Icom IC-7300. They're radios from different generations, use different technologies, are made by different manufacturers and come in different packaging.

Both radios have user manuals, circuit diagrams and documented testing and alignment processes, but they're not equivalent even if they look the same.

The 857 is constructed from discrete components and circuits. There's a microprocessor on-board, the source code is not available and updates are issued by the manufacturer if and when it sees fit. Its function is to control and sequence things, selecting band filters, switching modes, updating the display and control serial communications. While integral to the functioning of the radio, the microprocessor itself is used for command and control only.

Inside the 7300 you'll also find discrete components. There are circuits, filters and the like and while individual components have reduced in size there are many of the same kinds of functions inside the radio as you'll find on an 857. The microprocessor inside the 7300 is more advanced than the one inside the 857. The source code is also not available and updates are issued by the manufacturer when it sees fit.

If that was all there was to it, I would not have spent a month attempting to capture this. Suffice to say that looks are deceiving.

The microprocessor inside the 7300 does the exact same things as the 857 with one minor difference. It now also forms part of the signal input and output chain of the radio itself.

Let me say that again.

The computer that is the heart of a modern radio is an integral part of the signal processing of the radio. Where in a traditional radio the microprocessor was switching circuits on and off to process the signal, the modern solution is to do all the signal processing using software inside the microprocessor itself. If you want to get technical, an FPGA is doing much of the signal processing, but that too is driven by software.

Where previously you had access to the circuit diagram that would show you what was being done to the signal, today you have a magic black box that does stuff completely outside your control.

If you want to know how an SSB or FM signal is decoded on the 857, the service manual will helpfully point you at two chips which provide those specific functions. It describes how the signal comes into the chip and how the signal is processed once it leaves the chip and if you need more, you can look online to find the specifications for each chip to see precisely what they do and how they work, complete with equivalent circuits and specifications.

On the other hand if you wanted to know the same information for the 7300 you'd be out of luck because if you dig deep enough, following the signal path, eventually you'd end up inside the microprocessor where software is making that happen. There's no description on how this works, what the circuit equivalent characteristics are, there's no way to change how it works, no way to set parameters, no way to see inside and no way to experiment.

This is a problem because it means that you've got a solution that's no longer operating in the spirit of amateur radio. It's not open for experimentation, it's not subject to review, there's no way to test, no means to improve, no way to do anything other than what the manufacturer decided was appropriate.

For example, if I wanted to modify the FM pass-band width on an 857, I could update the FM demodulation circuit by replacing a couple of components. On a 7300, I could not because there is no circuit. The FM demodulator is described in software that I don't have access to and Icom has decided that the FM pass-band is fixed.

If the software was open however, I could add this function and make it available to anyone who would like to experiment.

At this point I'd also like to observe that the Icom user manual states that inside the IC-7300 it uses open source "CMSIS-RTOS RTX", "zlib" and "libpng" software, so Icom is benefiting from open source efforts, but not sharing their own.

This is not an Icom only problem, this is a specific issue around open source versus closed source and while you might think that the right to repair and open source is something that's not relevant to you, I'd like to invite you to consider what the implications are for our hobby. Are we going to go down the road of button pushers, or are we continuing our role as inventors and experimenters?

I'm Onno VK6FLAB

What mode is that?

Sat, 07/03/2021 - 12:00
Foundations of Amateur Radio

The hobby of amateur radio is about communication. When you go on-air and make noise, you initiate a communications channel, sending information out into the world and hoping for another station to receive and decode what you sent. The channel itself can be used in an infinite number of ways and each one is called a modulation mode, or mode for short. The popular ones come with most radios, CW, AM, SSB and FM.

Those few are not the only ones available. In fact as computers are being integrated into the radio at an increasing pace, signal processing is becoming part and parcel of the definition of a mode and new modes are being introduced at break neck speed. I've talked about WSPR as an example of one such mode, but there are many, each with their own particular take on how to get information between two stations.

As you listen on the bands you'll increasingly find yourself hearing a bewildering litany of beeps, pops and clicks. Some of those are due to ionospheric conditions, but many are different modes that are being experimented with across our spectrum.

If you have access to a band scope, a way of visualising radio spectrum, you can actually see the shapes and patterns of such signals over time and getting to that point can be as easy as feeding your radio audio into your computer and launching a copy of fldigi or WSJT-X.

Every mode requires a specific tool to decode it and with practice you'll discover that there is often a particular look or sound associated with a mode. Over time you'll confidently select the correct decoder, using your brain for the process of signal identification.

Of course if you don't have access to the library in your brain yet, since you've only just started, or if the mode you've come across is new, you'll need another library to discover what you found. There is such a library, the Signal Identification Wiki. It's a web-site that hosts a list of submitted signals, grouped by usage type, including one for our community.

On the amateur radio page of the Signal Identification Wiki there are over 70 different modes listed, complete with a description, an audio file and a spectrogram. With that you can begin to match what you've discovered on your radio to what the web-site has in the library and determine if you can decode the incoming information.

I will mention at this point that the Signal Identification Wiki is far from complete. For example, the Olivia mode has 40 so-called sub-modes of which about 8 are in common use. Each of those sub-modes looks and sounds different. The wiki shows only a single line for Olivia.

I'm pointing this out because the wiki allows you to submit a mode for others to use. If you have a signal, either by recording it off-air, or better still, recording it directly from the source, consider submitting it to the wiki so others can benefit from your experience.

If you've come across a signal and you cannot figure out what it is, there are other places you can go for help. The four and a half thousand members of the /r/signalidentification sub on reddit will happily look at and listen to your signal and try to help. Make sure you contribute some meta data like the time, frequency and location to accompany the spectrogram and audio.

You might have come to this point wondering why I'm encouraging you to use and contribute to the wiki and ask for help on reddit. Amateur radio is about experimentation. We love to do that and as we make signal processing easier and easier, more people are making new modes to play with.

The speed at which this is happening is increasing and as an operator you can expect to come across new signals. I remember not that long ago, it was last month, tuning to an FT8 frequency and the person I was with asking what that sound was. They'd heard it before but never discovered its purpose, even though FT8 has been with us since the 29th of June 2017.

What interesting signals have you come across and how did you go with decoding them?

I'm Onno VK6FLAB

When you share the hobby grows ...

Sat, 06/26/2021 - 12:00
Foundations of Amateur Radio

Recently I received a lovely email from Simon G0EIY, who reminded me that there is a voice-keyer that fits into a microphone. It was designed by Olli DH8BQA as a replacement for a standard Yaesu MH-31 microphone. I'd come across this a while ago and for several reasons put off actually ordering one, but Simon's encouragement tipped me over the fence and I've placed my order.

What I'm expecting to arrive at some point is a kit that has the minuscule surface mount components already soldered to a circuit board, leaving a couple of individual components ready for my soldering iron abuse. I'll let you know how it goes.

This little experience reminded me that I've been stumbling across solutions like this for years, an amateur with an itch to scratch and the drive to do something about it.

For example, Paul KE0PBR likes to operate satellites and in doing so amassed a collection of frequencies. Since the Doppler effect alters the actual frequency depending on the satellite coming towards you or moving away from you, there are corrections that need to be done. If you're in the field, this is something that you might struggle with, so Paul created a Frequency Cheat Sheet.

If you're looking into magnetic loop antennas, you'll quickly encounter a spreadsheet made by Steve AA5TB that will get you started with the parameters for designing and building your own magnetic loop.

The popular VK Contest Logger, known colloquially as VKCL was built by Mike VK3AVV. It's a simple to use logging tool that has a large collection of rules for different contests and Mike often brings out a new version to incorporate the latest rule changes just before a contest. It even incorporates a station log.

If you've come across apps like DroidPSK, DroidSSTV and DroidRTTY, they're the brain children of Wolfgang W8DA. The increasingly popular Repeaterbook maintained by a global community of volunteers is the work of Garrett KD6KPC.

I've lost count of the number of radio amateurs running an online shop where you can buy gear, or kits, or circuit boards, components, antennas, software and the like, not to mention an astonishing collection of professionally built tools like antenna analysers, filters, amplifiers and more.

It's said that amateurs are notorious for their short arms and deep pockets. I like to think of it as a discerning and informed customer. It's easy to sell snake-oil to the masses, it's been going on for centuries, it's much harder to do that when the person you're selling to knows how the thing you're selling works and knows how to read a data-sheet, let alone ask awkward questions when the need arises.

Before I go on I will mention that the people I've named here are unaware of me doing so. I've not been approached by any of them to mention their name and I have no relationship, other than being a happy customer. I'm saying this out loud because this podcast goes out on amateur radio repeaters all over the world and commercial use of amateur radio is strictly prohibited.

You might have gotten to this point wondering why I'm even taking the time to highlight some of the efforts I've come across and the reason is very simple. This activity is everywhere, you just have to look. It's not like Olli, Paul, Steve, Mike, Garrett or Wolfgang shouted their involvement from the rooftops, it's just that the information is available if you care to look. Remember, these people are radio amateurs just like you and I.

That's important because the difference between a tool that you're using that you built, sitting in your shack or on your computer and that of the people I've named is that they took an extra step and shared their efforts with the community. Some amateurs are making a living from this hobby and I applaud their efforts, for the rest of us, me included, that's often not the point.

Invention is happening all over the world, right now. You are doing it, despite your protestations to the contrary. You might have made a PDF that you carry around during a contest, or it might be a calculator you knocked up to figure out how to build something. It might be a circuit diagram, an app, a how to guide, a map or a video. All of these things are creations that can be shared to increase the amount of innovation that happens by people bouncing ideas off other ideas.

In 1675, Sir Isaac Newton said: "If I have seen further it is by standing on the shoulders of Giants."

You are one of those giants and the person who uses your contribution to make their own is standing on your shoulders.

What are you waiting for?

Publish, share, document, photograph and make available, it's how society makes progress and it's how amateur radio stays at the forefront of innovation.

Get on air and make noise is not purely restricted to the RF spectrum.

I'm Onno VK6FLAB

Here be Dragons, venturing into uncharted territory ...

Sat, 06/19/2021 - 12:00
Foundations of Amateur Radio

Sometimes when you head into uncharted territory, you gotta laugh at yourself from time to time. Last weekend I participated in a contest, something I enjoy doing as you might recall. To simplify the process of setting up in a vehicle I'd proposed a bold plan to save space and reduce complexity. I was anxious about reducing the amount of technology because I'd come up with a plan to use a paper log to track my contest contacts.

I had visions of operating for the best part of 24 hours and making hundreds of contacts. This was based on the fact that in 2016 I'd done this same contest on my own and made a 138 contacts and scored 18221 points, having moved 17 times.

I'd also done the contest in 2018 and for reasons I don't recall, I made one contact over 8 hours.

That right there should have been a warning sign that I might not quite get the result I'd been fearful of.

Blissfully unaware of the adventure that was unfolding, after driving to the first location, I called CQ for the better part of an hour. Then I called some more. When I was done with that, I called CQ more. 90 minutes in, I made my first contact.

That pretty much set the pattern for the next nine hours. At one point we feared that the radio had packed up, but then I made a 2900 km contact with the other side of the country between me in Perth in VK6 and Catherine VK7GH in Tasmania.

Around five pm we packed up, having moved location six times, making eight contacts and claiming 64 points, having worked three of the six states I heard.

Talk about overblown fears.

Looking back, even documenting 138 contacts on paper doesn't seem nearly as daunting after the fact, but that's for another day. I did learn some other things too.

I was worried about logging the band correctly, since using a computer that's not connected to the radio requires an extra step when you change band. Using paper the issue wasn't the band, it was remembering to record the time.

We didn't have the opportunity to test all the gear before the contest. I was bringing in some extra audio splitters, which didn't work with the set-up we had, testing before hand would have revealed that. We knew that there was a risk associated with not testing before and decided that in the scheme of things it didn't matter and we were right. It didn't.

We hadn't much planned for food and pit-stops, but having a GPS and an internet connection solved all those issues almost invisibly. Of course that wouldn't work in an unpopulated area, but we were well inside the metropolitan area of a big city, well, Perth.

Using a head-set worked great, though it didn't have a monitoring feature, so my voice got louder and louder and Thomas VK6VCR who took on the tasks of navigating and driving became deafer and deafer as the day progressed.

I keep coming back to wanting a portable voice-keyer, a device that you can record your CQ call into and then at the press of a button, play it back so you don't lose your voice whilst calling CQ hour after hour. The challenge seems to be that you need to find a way to incorporate it into the existing audio chain so it doesn't introduce interference.

Winning a contest requires contacts and that can only happen if there are other participants. This time around there didn't seem to be that many on air making noise. I think I heard a grand total of 13 stations. Some of that was due to propagation conditions which were nothing like I've ever heard before, but perhaps if I stick around for another solar cycle, that too will become familiar. Atrocious is one word that comes to mind.

Continuing our learning, the weather, not just space-weather, actual earth weather, snow, rain, hail and in our case sun. Neither of us thought to bring a hat since the forecast was for intermittent rain. We had no rain, instead had the opportunity to bask in the winter sun. Yes, it's winter here in Oz when it's Summer in Europe. As it happens, our winter temperatures are like your summer ones, but I'll leave it to you to confirm that for yourself.

Finally, we have a local phenomenon in VK6. When the sun goes down, the 40m band comes alive with the sounds of Indonesia. Among the radio amateurs are plenty of pirate stations with massive AM transmitters enjoying the conditions, chatting, chanting and what ever else comes to voice. Not conductive to being on-air and making noise, but as far as I can tell, not commonly heard outside of VK6.

That said, the Indonesian radio amateur community must have the patience of saints putting up with the interference that their non-licensed countrymen cause on a daily basis. My hat off to you!

As I've said all along, this radio thing is about getting on air and having fun and I can tell you, we did.

What did you get up to?

I'm Onno VK6FLAB

Removing technology for a change

Sat, 06/12/2021 - 12:00
Foundations of Amateur Radio

My first ever interaction with amateur radio was a field day on Boterhuiseiland near Leiden in the Netherlands when I was about twelve. The station was set-up in an army tent and the setting was Jamboree On The Air, or JOTA. My second field-day, a decade ago, was a visit to a local club set-up in the bush. At that point I already had my licence and I'd just started taking the first baby steps in what so-far has been a decade long journey of discovery into this amazing hobby.

A field day is really an excuse to build a portable station away from the shack and call CQ. A decade on, I vividly remember one member, Marty, now VK6RC, calling CQ DX and getting responses back from all over the world.

From that day on I looked for any opportunity to get on air and make noise. Often that's something I do in the form of a contest. I love this as a way of making contacts because each interaction is short and sweet, there's lots of stations playing from all over the planet and each contest has rules and scores. As a result you can compare your activity with others and look back at your previous efforts to see if you improved or not.

As you've heard me repeatedly say, I like to learn from each activity and see if there are things I could have done differently. I tend to think of this as a cycle of continuous improvement.

A few months ago a friend asked me if I was interested in doing a contest with him. For me that was a simple question to answer, YES, of course!

Over the last few months we've been talking about how we'd like to do this and what we'd like to accomplish. For example, for me there's been a regular dissatisfaction that during portable logging I've made mistakes with recording the band correctly in the log and having to manually go back and fix this, taking away from making contacts and having fun. To prevent that, I wanted to make sure that we had electronic logging that was linked to the radio in the same way as I do in my shack, so it didn't happen again. It was a small improvement, but I felt it was important.

Doing this meant that we'd either need to sort out a computer link, known as CAT, or Computer Assisted Tuning for his radio in the vehicle, or bring my radio, CAT control, power adaptors as well as bring a laptop, power supply and last but not least find space in the vehicle to mount all this so it would work ergonomically for a 24 hour mobile contest. The vehicle in question is the pride and joy of Thomas VK6VCR, a twenty-odd year old Toyota Land Cruiser Ute with two seats, three if you count the middle of the bench, and neither of us would ever be described as petite, so space is strictly limited.

In playing this out and trying to determine what needed to go where, we discovered that this wasn't going to work and I made the bold proposal to go old school and use a paper log.

This would mean that we could use the existing radio, without needing to sort out CAT control, the need for any power adaptors, no space required for a laptop, no power for that, no extra wiring in the vehicle, and a whole lot more simplicity. So that's what we're doing, paper log and a headlamp to be able to see in the dark.

I must confess that I'm apprehensive of this whole caper, but I keep reminding myself that this too is an experience, good or bad, and at the end of the day, we're here to have fun. I might learn that this was the worst idea I've ever had, or I might learn that this works great. It's not the first time I've used a paper-log, so I'm aware of plenty of pitfalls, not the least of which is deciphering my own handwriting, the ingenuous project of three, or was it four, different handwriting systems taught to me by subsequent teachers in different countries. There's the logistics of being able to read and write at an odd distance, trying to work out how to operate the microphone with the wrong hand, though we are trialling a headset and boom microphone with a push to talk button, and then there's the radio, one I've used before, but not in a contest setting and not whilst driving around on the seat of a 4WD hell-bent on rattling my teeth from their sockets.

On the plus side, I've done a contest with my friend before and he is familiar with my competitive streak and we're both up for a laugh, so I'm confident that despite the challenges that lie ahead, we're going to make fun and enjoy the adventure.

I can't wait to find out if simplifying things will result in a better experience and only trying it will tell. I'll let you know how it goes.

When was the last time you stepped out of your comfort zone and what did you do? How did it work out?

I'm Onno VK6FLAB

What radio should I buy as my first one?

Sat, 06/05/2021 - 12:00
Foundations of Amateur Radio

Recently a budding new amateur asked the question: "What radio should I buy?"

It's a common question, one I asked a decade ago. Over the years I've made several attempts at answering this innocent introduction into our community and as I've said before, the answer is simple but unhelpful.

"It depends."

Rather than explaining the various things it depends on, I'm going to attempt a different approach and in no particular order ask you some things to consider and answer for yourself in your journey towards an answer that is tailored specifically to your situation.

"What's your budget?"

How much money you have set aside for this experiment is a great start. In addition to training and license costs, you'll need to consider things like shipping, import duties and insurance, power leads and a power supply, coax leads and connectors and last but not least, adaptors, antennas and accessories.

"Should you buy second hand or pre-loved?"

If you have electronics experience that you can use to fix a problem with your new to you toy this is absolutely an option. When you're looking around, check the provenance associated with the equipment and avoid something randomly offered online with sketchy photos and limited information. Equipment is expensive. Check for stolen gear and unscrupulous sellers.

"What do you want to do?"

This hobby is vast. You can experiment with activities, locations, modes and propagation to name a few. If you're looking at a specific project, consider the needs for the accompanying equipment like a computer if what you want to explore requires that. You can look for the annual Amateur Radio Survey by Dustin N8RMA to read what others are doing.

"What frequencies do you want to play on?"

If you have lots of outdoor space you'll have many options to build antennas from anything that radiates, but if you're subject to restrictions because of where you live, you'll need to take those into account. You can also operate portable, in a car or on a hill, so you have plenty of options to get away from needing a station at home.

"Are there other amateurs around you?"

If you're within line of sight of other amateurs or a local repeater, then you should consider if you can start there. If that doesn't work, consider using HF or explore space communications. There are online tools to discover repeaters and local amateurs.

"Is there a club you can connect to?"

Amateur radio clubs are scattered far and wide across the planet and it's likely that there's one not too far from you. That said, there are plenty of clubs that interact with their members remotely. Some even offer remote access to the club radio shack using the internet.

"Have you looked for communities to connect with?"

There is plenty of amateur activity across the spectrum of social media, dedicated sites, discussion groups, email lists and chat groups. You can listen to podcasts, watch videos, read eBooks and if all that fails, your local library will have books about the fundamental aspects of our hobby.

"Have you considered what you can do before spending money?"

Figuring out the answers to many of these questions requires that you are somewhat familiar with your own needs. You need a radio to become an amateur, but you need to be an amateur to choose a radio. To get started, you don't need a radio. If you already have a license you can use tools like Echolink with a computer or a mobile phone. If you don't yet have a license, you can listen to online services like WebSDR, KiwiSDR and plenty of others. You can start receiving using a cheap RTL-SDR dongle and some wire.

"Which brand should you get?"

Rob NC0B has been testing radios for longer than I've been an amateur. His Sherwood testing table contains test results for 151 devices. The top three, Icom, Kenwood and Yaesu count for more than half of those results. This means that you'll likely find more information, more support and more local familiarity with those three. I will point out that Rob's list has 27 different brands on it, so look around and read reviews both by people who test the gear and those who use it.

And finally, "Why are you here?"

It's a serious question. Different things draw different people into this community. Think about what you like about it and what you want to do more of. Take those things into consideration when you select your radio.

As you explore the answers to these questions, you'll start building a picture of what amateur radio means to you and with that will come the answer to the question: "What radio should I buy as my first one?"

If there are other questions you'd like to ask, don't hesitate to get in touch. My address is [email protected] I look forward to hearing from you.

I'm Onno VK6FLAB

Bringing chaos into order

Sat, 05/29/2021 - 12:00
Foundations of Amateur Radio

One of the questions you're faced with when you start your amateur journey is around connectors. You quickly discover that every piece of equipment with an RF socket has a different one fit for purpose for that particular device.

That purpose includes the frequency range of the device, but also things like water ingress, number of mating cycles, power levels, size, cost and more.

As an aside, the number of mating cycles, how often you connect and disconnect something is determined by several factors, including the type of connection, manufacturing precision and the thickness of the plating. That said, even a so-called low cycle count connector, like say an SMA connector lasting 500 cycles will work just fine for the next 40 years if you only connect it once a month.

Back to variety. My PlutoSDR has SMA connectors on it as do my band pass filters, my handheld and one RTL-SDR dongle. The other dongle uses MCX. Both my antenna analyser and UHF antenna have an N-type connector which is the case for my Yaesu radio that also has an extra SO239 which is what my coax switches have. My HF antenna comes into the shack as an F-type and nothing I currently own has BNC, but stuff I've previously played with, does.

When you go out on a field-day, you mix and match your gear with that of your friends, introducing more connectors and combinations.

Invariably you acquire a collection of adaptors. At first this might be only a couple, quickly growing to a handful, but after a while you're likely to have dozens or more. My collection, a decade's worth, which currently includes more than 25 different combinations is over a hundred individual adaptors and growing.

For most of the time these have been tossed into a little tool box with a transparent lid, but more and more as the collection and variety grew I started to realise that I was unable to quickly locate an adaptor that I was sure I had, since it had been used in a different situation previously.

In addition to coming to the realisation that the reason I couldn't find a connector was because it was still in use, I began to notice that I had daisy chains of connectors.

For example, my HF antenna has a PL259 connector that is adapted to an F-type connector with an SO239 barrel, a PL259 to BNC and a BNC to F-type adaptor. At the other end of the RG6 coax that runs from outside into the shack, the reverse happens, F-type to BNC and BNC to PL259. If you're counting along, that's five adaptors to get from PL259 to PL259 via F-type.

At this point you might wonder why I'm using RG6 coax. The short answer is that I have several rolls of it, left over from my days as an installer for broadband satellite internet. RG6 is very low loss, robust and heavily shielded. Although it's 75 Ohm - a whole other discussion - in practice that's not an issue. What is a problem is that the only connectors available for it are F-type compression connectors. To get those to PL259 requires a step sideways via BNC.

My point is that the number of adaptors is increasing by the day.

I should acknowledge the existence of so-called universal connector kits. The idea being that you go from one connector to a universal joiner and from that to another connector. Generally these kits have around 30 connections, giving you plenty of options, but in reality more often than not, you only have half a dozen universal joiners, so your money is effectively buying you half a dozen conversions, great for a field day, not so great for a permanent installation. You could build your own collection and use something like SMA or BNC as your universal joiner, which is something I'm exploring.

To keep track of my collection, recently I started a spreadsheet. It's essentially a list showing the number and types of connections. If you make a pivot table from that you'll end up with a grid showing totals of adaptors you have.

You can use this grid to fill a set of fishing tackle boxes and all of a sudden you've got a system where everything has its own place.

If you start this process you'll quickly notice that the table only needs to be half filled, since a BNC to SMA is the same as an SMA to BNC adaptor. This leaves you space to do some fancy footwork where the bottom right hand of the triangle can fit into the top left of the empty space, but I'll leave you to figure that out.

My table also includes things like TNC and MCX adaptors, but I don't use those very often, so at the moment I'm putting them in their own box together with T-adaptors and other weird and wonderful things like FME and reverse SMA.

For setting the order, I've gone for alphabetic, but if you have a better suggestion, I'm all ears. My email address as always is [email protected]

What ideas have you come up with to organise the chaos that is your sprawling connector library?

I'm Onno VK6FLAB